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ABSTRACT: Many different failure criteria have been suggested for mixed-mode delamination

toughness, but few sets of mixed-mode data exist that are consistent over the full range of Mode 1

_pening load to Mode II shear load range. The mixed-mode bending (MMB) test was used to measure

thc delamination toughness of a brittle epoxy composite, a state-of-the-arl toughened epoxy compos-

ite, and a tough thermoplastic composite over the full mixed-mode range. To gain insight into the
different failure responses of the different materials, the delamination fracture surfaces were also

examined. An evaluation of several failure criteria that have been reported in the literature was

performed, and the range of responses modeled by each criterion was analyzed. A bilinear failure

criterion was introduced based on a change in the failure mechanism observed from the delamination

surfaces. The different criteria were compared to the failure response of the three materials tested. The

responses of the two epoxies were best modeled with the new bilinear failure criterion. The failure

response of the tough thermoplastic composite could be modeled well with the bilinear criterion but

could also be modeled with the more simple linear failure criterion. Since the materials differed in
their mixed-mode failure response, mixed-mode delamination testing will be needed to characterize a

composite material. This paper presents consistent sets of mixed-mode data, provides a critical
evaluation of the mixed-mode failure criteria, and should provide general guidance for selecting an

appropriate criterion for other materials.
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Nomenclature

a delamination length, m

b specimen width, m

c position of applied load on lever, m

c,_ position of gravity load on lever, m

E_ lamina longitudinal modulus, GPa

E22 lamina transverse modulus, GPa

Gr total mixed-mode strain energy release rate, J/m 2

Gt, total mixed-mode fracture toughness, J/m 2

Gj_ lamina transverse shear modulus, GPa

G_ Mode I strain energy release rate, J/m 2

G_ pure Mode I fracture toughness, J/m 2

G]'2. Mode I component of mixed-mode fracture toughness, J/m _'

Gu Mode II strain energy release rate, J/m"

Gu_ pure Mode !1 fracture toughness, J/m 2

G]'_. Mode !1 component of mixed-mode fracture toughness, J/m 2

h specimen half-thickness, m
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1 bending moment of inertia of specimen half-thickness, ma

i mode interaction parameter

Kj Mode I component of stress intensity factor

K u Mode Ii component of stress intensity factor

L specimen half span length, m

N hackle angle parameter

P, critical applied load, N

o_,/3 material parameters used in the power law criterion

A elastic foundation parameter, l/m

3' material parameter used in the exponential hackle criterion

vl material parameter used in the exponential linear KJKH criterion

K,_ material parameters used in the linear interaction criterion

,_,_ material parameter_ used in the bilinear criterion

Introduction

Delamination is a primary failure mode of laminated composite materials. Delamination tough-

ness under Mode I opening load and Mode II shear load can be measured with the double cantilever

beam (DCB) test and the end notch flexure (ENF) test, respectively. In structures, however,

delaminations are rarely loaded in pure Mode ! or pure Mode II but grow under a mixture of Mode I

and Mode II loading. Several types of tests have been used to measure mixed-mode delamination

fracture toughness. In the past, several different kinds of test specimens were needed to measure

delamination fracture toughness over the full range of Mode 1 and Mode II combinations [/].

Unfortunately it was unclear what effect the different test configurations had on the measured

failure response. Recently, ' however, the mixed-mode bending (MMB) test [2], which simply

combines the DCB and ENF Ioadings, was developed to measure mixed-mode delamination

toughness and then redesigned [3] to avoid geometric nonlinearities encountered when testing

tough composites. The MMB test allows almost any combination of Mode ! and Mode I! loading to

be tested with the same test specimen configuration. Therefore, inconsistencies present in previous

mixed-mode toughness data sets can be avoided.

Many different mixed-mode failure criteria have been suggested for predicting delamination

growth, but these criteria were often based on inconsistent sets of toughness data. It is important

that accurate mixed-mode failure criteria be developed so that the extension of delaminations in

structures can be predicted. Once delamination can be predicted accurately, fewer component and

full-scale tests will be required to ensure the safety of composite structures. The purpose of this

paper is to evaluate different mixed-mode criteria by comparing them to consistent sets of mixed-

mode toughness data obtained using the MMB test and also to introduce a bilinear mixed-mode

criterion that was developed in the course of this study.

The redesigned MMB test was used to measure the delamination toughness of a brittle epoxy

composite, a state-of-the-art toughened epoxy composite, and a tough thermoplastic composite over

the full mixed-mode range. The fracture surfaces of the composites were examined to gain insight

into the failure responses of the different materials. Next, an evaluation of delamination failure

criteria that have been reported in the literature was performed, and the range of material responses

modeled by each criterion was evaluated. In addition, a bilinear failure criterion was developed.

The failure responses of the three materials were compared to the different mixed-mode failure

criteria, and the best criterion for each material was selected.

Toughness Testing

The redesigned MMB test apparatus was used to measure the mixed-mode delamination tough-

ness of three different composite materials. This test is capable of testing over virtually the entire
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mixed-mode range with consistent test conditions. Consistent sets of data with which to compare

proposed failure criteria, therefore, were obtained.

The materials used in this study were chosen to represent a wide range of toughness properties.

AS4/3501-6 is a commonly used brittle epoxy composite. IM7/977-2 is a state-of-the-art toughened

epoxy composite. It consists of a high-strength IM7 fiber and an epoxy matrix that has been

toughened with a thermoplastic additive. The AS4/PEEK (polyether-ether-ketone) is a tough

graphite/thermoplastic composite and therefore radically different from the thermoset epoxies. The

elastic properties of these three materials are listed in Table 1. These properties were used in the

calculation of fracture toughness. Because the toughness calcuation is very sensitive to the longitu-

dinal modulus E_, it was measured using a three-point bend test with a 3-in. (7.6-cm) span lenglh.

E_I was measured in bending because a flexurally measured modulus for laminated composite

materials has been shown to differ significantly from an axially measured modulus [4], and the

MMB test is a bending type of test. The toughness calculation is not as sensitive to the transverse

modulus E_ and shear modulus G_. Therefore, these properties were obtained from the literature

The materials were made into 24-ply unidirectional panels. The panels were cut into test

specimens that were 15 cm long, 2.54 cm wide, b, and nominally 3 mm thick, 2h (6 in., 1 in., and

0.12 in., re_,pectively). Each specimen contained a 0.13-/.tin (0.5 rail) thick insert at the midplane of

the specimen to act as a delamination starter. A Teflon ® insert was used in the epoxy specimens

while a Kapton insert was used in the PEEK specimens. Loading hinges were bonded to the

specimen, shown in Fig. I, so that the starter provided a 2.5-cm (1-in.) initial delamination length a.

TABLE 1 --Material properties.

E_ J', GPa (f_}r

Material E,, ", GPa comparison) E__, ", GPa G_ _', GPa

AS4/3501-6 132 145 9.7 5.9

IM7/977-2 143 142 9.2 4.g

AS4/PEEK (AP('2 ) 129 129 IO. I 5.5

"Measured in current study.
'Obtained from Refs ,t, 5, and 6.

Applied I_ c

Load _ ! P -- --_g gLever. I I I'_-c

/_/Loading Center of

Saddle / kJ Roller Gravity

Test Specimen

Base

,_ L

Fulcrum
.__./Hinge

I¢,

Delamination2L/La _1_

FIG. I The redesigned mixed-mode bending test apparatus.
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The redesigned MMB test apparatus shown in Fig. 1 uses a lever to apply Mode I and Mode II

loadings to a split beam specimen. The load on the top hinge tends to pull the delamination open

resulting in Mode I loading similar to that of the DCB test. The load at the fulcrum bends the

specimen creating a Mode II loading similar to the ENF test. The ratio of the Mode I to Mode II

loading is controlled by the lever load position, c. The value of c therefore determines the mixed-

mode ratio GJGw The redesigned apparatus uses a saddle mechanism to hold the loading rollers

just above the specimen midplane and on either side of the test specimen. This configuration has

been shown to drastically reduce geometric nonlinearity errors that can develop when testing tough
materials [3]. The half span length, L, of the MMB apparatus was 5.1 cm (2 in.).

Each material was tested in at least three mixed-mode ratios (GJGn) and at the two pure-mode

cases. The three mixed-mode ratios tested were the 4/1, I/I, and I/4 cases which corresponded to c

values of 97.3 ram, 42.2 mm, and 27.7 ram, respectively (3.83 in., 1.66 in., and 1.09 in.,

respectively). The AS4/3501-6 material was also tested at a 1/20 ratio with a c value 21.6 mm (0.85

in.) while the IM7/977-2 material was tested at the 1/2 ratio with a c value of 33.0 mm (1.30 in.).

The pure Mode I toughness was tested using a standard DCB configuration. The pure Mode II

toughness was tested using the MMB apparatus with a c value of 0. This is equivalent to an ENF

configuration. (All the tests are consistent since the mixed-mode test is simply a combination of the

pure-mode tests.) Five tests at each test configuration were performed on the epoxies while only

three tests were performed for the PEEK material.

The specimens were loaded in displacement control at a rate of 0.5 ram/rain (0.02 in./min) at the

lever loading point. The load-displacement response was recorded, and the critical load P, used in

G, calculations was taken as the load where the load-displacement curve deviated from a linear

response. The tests on the epoxy specimen measured the toughness required for delamination to

initiate from the insert. The PEEK specimens which were tested in a previous study [31 were first

precracked under a 4/i mixed-mode loading to a delamination length a of 3.2 cm (1.25 in.) and then

tested. Although Murri et al. [7] showed that delamination toughness measured from a precrack

could be significantly different from values measured from an insert, a study involving a 4/! type

precrack showed good agreement with insert initiation values [8]. The PEEK toughnesses presented

here is slightly lower than that given in Ref 3 because those data were calculated with P, equal to

the maximum applied load. In this study, the edge of the specimen was coated with a white water

soluble typewriter correction fluid so that the delamination could be observed more easily with a

7 × magnifying scope. The delamination extension was observed at approximately the same time as

the nonlinearity in the loading curve. The delamination length, a, was determined by breaking the

test specimen open after the test and measuring the length of the initial delamination. For the epoxy

specimen this was the length of the insert, while for the PEEK specimen, a was the length to the

visible marking on the fracture surface left by the precrack.

The Mode I and Mode II components of fracture toughness, G_ and GT_, were calculated for the

IM7/977-2 and AS4/PEEK specimens using the following equations

G_c

G_c =

(36c2 -(a4L_124cL+ 4LZ)P_ [a2 + __2a+ I + h2E_]

64L2bEi II ('12 + '_13 J

(I)

where

l _/6E_ bh_
A = h_-_lt and 1-12
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These equations are based on beam theory and include corrections to account for shear deformation

and deformation due to the rotation of the specimen cross-section at the delamination tip [2].

The calculation of fracture toughness for the AS4/3501-6 material was more complicated

because this material has a lower toughness than the other materials. The weight of the MMB lever

has been shown to cause significant errors when testing lower toughness materials [91. The lever of

the redesigned MMB apparatus used in this study was found to weigh 8.23 N (1.85 Ib). The weight

of the saddle mechanism contributes to the force Pc. Since the saddle mechanism is moved when

the lever load point is changed, the center of gravity of the lever assembly given by length c_ also

changes. The relationship between c and c_ was found for this apparatus to be c,_ = 9.65 + 0.24 c

where c and c, are expressed in millimeters. The maximum errors were given as [9]

Max % Error G_ _ 1.3 X/Gk.bElll x 100
(2)

Max % Error Gu_ -- 0.43 + I aP_" -- ×100

V_Gn_bEI i1

Therefore, the 4/1 mixed-mode case (c = 97.3 mm) would have a GE,. error of 6% if the lever

weight were neglected. The lever weight was therefore accounted for in all AS4/3501-6 toughness

calculations by using the equations [9]

2a 1 h2Etl 11[-(36c2 - 24cL + 4Lz)P 2 + l-] a2 + -- + -- +

O',',' = |(72cc_ - 24cL - 24cxL + 8L2)P,P_ + l A A2 10G,sJ

[_ (36c_. - 24ceL + 4Lz)PZxJ 64L2bE, ,l

G,%. = 1(6cc, + 6cL + 6ceL + 6L2)P,P_ + _.__1

L (3c_ + 6ceL + 3L2)P_ 64L2bE"I

The pure Mode I toughness was calculated using Eq 4 for all materials.

P_[ 2a 1 h2E,,]Gk =_ a z+-+ + (4)A _ 10G,_J

This equation was used in developing the mixed-mode equations and is consistent with the mixed-

mode equations. The pure Mode II toughness G.,. can be calculated from the equations for G_'_. in

Eqs I or 3 where c is set to 0. Notice that the GT_ equations give erroneous results at this c value

because for c _ 1.7 cm (0.67 in.), the delamination surfaces do not separate allowing load to be

transferred across the face of the delamination [2]. This contact force is not modeled by Eqs 1 and 3

and cause the true G_. to be 0 but do not effect the G_, values.

The delamination fracture surfaces were examined using a scanning electron microscope (SEM).

SEM photomicrographs were taken just beyond the delamination insert for the epoxy composites

and just beyond the precrack marking for the PEEK composite. Therefore, the fracture surfaces

show the first increment of delamination growth which correspond to the measured fracture

toughnesscs.

Toughness Test Results

The mixed-mode failure responses of the three composite materials are presented by plotting G'(_

versus G'_'_. These mixed-mode diagrams are plotted in Fig. 2. The failure responses of the two
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FIG. 2--MLred-mode failure responses of graphite composite materials (I k,llm 2 = 5. 71 in.-

lb/in. 2).

epoxy composites are quite similar in shape, but the AS4/3501-6 material is more brittle than the

1M7/977-2. For both epoxies, the G]"2.values appear to increase as the G]'_, is introduced and then

slowly decrease to zero as G't';, approaches Gitc. The rising Gt" with G_';, may bc somewhat

surprising, but this phenomenon can also be seen in data presented in Refs 10 and 11. The overall

shape of the failure response is convex and very similar in shape to the mixed-mode diagram for a

brittle-epoxy composite system studied in Ref I. The AS4/PEEK material is even tougher than the

IM7/977-2 material at all mixed-mode ratios except near pure Mode !1, and the shape of the failure

response is quite different. G'n'_decreases almost linearly with G't';_which produces a mixed-mode

diagram very similar to those presented in Ref 1 for different tough composite systems. Since the

shapes of the failure responses of the materials are so different, it is clear that no single criterion

based on just G], and G,_ will model all delamination failure. One criterion might be able to model

the different materials if material parameters can be changed so that the criterion can be lit to the

data. If this approach fails, then different criteria would have to be used for different materials.

SEM photomicrographs show that the fracture surfaces of the different materials change dramati-

cally with mixed-mode ratio. As discussed earlier, these photomicrographs were taken just after

delamination initiation. Figure 3 shows the delamination surfaces at different mixed-mode ratios for

the AS4/3501-6 composite. The photomicrographs were taken at a magnification of 1000x. At

pure Mode I the fracture surface is very flat indicating a brittle cleavage fracture which would

explain the low Mode 1 fracture toughness• As Mode II is added, the fracture surfaces becomes

rougher as seen in the 4/I ratio case. Troughs have appeared where fibers have been pulled away

from the matrix indicating interfacial failure. The side of the fracture surface that did not contain a

large percentage of fibers is shown here because the texture of the fractured resin is easier to see in

this view. The increased roughness, which indicates a more tortuous delamination path, could
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FIG. 3--Delamination photonficrographs _tf AS4/3501-6 at d_fferent mL_ed-mode ratios

(_ 1000 × ).

explain why the Mode I component of fracture toughness rises as Mode II is introduced. The

fracture surface at the 1/I mixed-mode ratio is characterized by hackles. Hackles are features that

are "flake-like in appearance and.., overlap on top of one another similar to the shingles on the

roof of a house" [121. The pure Mode I1 fracture surface also contains hackles, and the similarity

between the 1/I and pure Mode II fracture surfaces indicates a single failure mode through this

region. The difference between these fracture surfaces and those at the pure Mode I and 4/I case

may indicate a change in the failure mechanism near the I/1 ratio.

Figure 4 shows the fracture surfaces of the IM7/977-2 composite at several mixed-mode ratios.

As seen from the figure, the fracture surfaces of IM7/977-2 are very similar to those of AS4/3501-6.

The Mode I fracture is cleavage; fiber troughs appear at the 4/1 ratio; and the hackling begins

around the 1/I ratio and continues through the pure Mode II condition. The change in fracture

surface between the 4/I and 1/1 ratio is even more pronounced for this material than for the AS4/

3501-6, and again may indicate a changing failure mechanism. The similarity in the fracture

surfaces of these materials may explain the similarity between the shapes of the failure responses of

these two materials which can be seen in Fig. 2. No explanation for the increased toughness of IM7/

977-2 over AS4/3501-6 could be made by observing the fracture surfaces at the magnification used

in this study.

The fracture surfaces of the PEEK composite shown in Fig. 5 are noticeably different from those

of the epoxies. All the PEEK fracture surfaces have cusps caused by the extensive yielding of the

matrix. The higher strain to failure created by the yielding gives this material a higher fracture

toughness than the epoxies tested. The ridges and valleys seen in the figure are due to the fibers that

have been pulled out of the valleys. The ridges form because the larger volume of matrix material

found between the fibers can undergo more deformation, thereby creating the ridges of cusps. The
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FIG. 4--Delamination photomicrographs q[ IM7/977-2 at dij]k, rent mL_-ed-mode ratios
(_1000 × ).

primary difference between the fracture surfaces at different mixed-mode ratios is the orientation of

the cusps. The Mode I fracture surface has cusps that are randomly pulled in different directions. In

the I/I fracture surface the cusps tend to be drawn slightly toward the top of the micrograph due to

the Mode II action. Larger amounts of Mode It draw the cusps more and more, and in the pure

Mode II fracture surfaces, all the cusps are extensively drawn upward. No indication of hackling or

of changing failure mechanism was observed on the AS4/PEEK fracture surfaces.

Mixed-Mode Delamination Criteria

Many modeling attempts have been made to describe the mixed-mode delamination failure

response of composite materials. Failure criterion have been based on stress or strain near the crack

tip, crack opening displacement, stress intensity factor, or strain energy release rate. Strain energy

release rate seems to be a good measure of a material's resistance to delamination extension and

most of the failure criteria that have been suggested can be written in terms of a critical strain

energy release rate or fracture toughness. Although the primary interest in this paper is delamina-

tion, criteria suggested fl)r both delamination and ply cracking will be presented, in both ply

cracking and delamination, a crack is growing in the matrix in the direction of the fibers. Because

the fiber-matrix geometry of both types of cracks are so similar, one would expect the failure

responses to be similar as well. In addition to the failure criteria that have been found in the

literature, a bilinear failure criterion will be introduced.

The mixed-mode failure criteria will be written in terms of the Mode [ and Mode [I toughnesses,

Gk and GH,., since pure mode toughness data are readily available. The mixed-mode failure

response of a material can be described by plotting the Mode I component of fracture toughness,
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FIG. 5--Delamination photomicrographs of AS4/PEEK at different mixed-mode ratios

(- 1000 x ).

G'_'_.,versus the Mode !1 component, G]'_. An accurate failure criterion will match the material

response when plotted on this mixed-mode diagram. Since the response of different materials can

be quite different, each failure criterion will be evaluated first by looking at the range of failure

responses that each criterion can model. For comparison each criterion will be evaluated assuming

G_ = 1 and GH_ = 3. Some criteria also involve the ratio of E_I/E22. For comparison this ratio will

be assumed to be 10. The criteria will be fit to measured toughness data in a subsequent section.

Simple Criteria

The simplest criteria assume that either the Mode I component [13], the Mode I1 component [14],

or total fracture toughness [15] will stay constant as the mixed-mode ratio changes. These criteria

are respectively

G'l_ = Gl_ (5)

G'l'_, = Gin. (6)

G'_ + G'(_,, = G.,_ (7)

These criteria are plotted on the mixed-mode diagram (Gt versus G[]) in Fig. 6. The first criterion

assumes that only the Mode I component of loading controls delamination growth which therefore

assumes that GI_ is insignificant. The second assumes that only the Mode 11 component of loading

is important and therefore that G_, is insignificant. A more reasonable criterion would be to combine
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FIG. 6--Mixed-mode fracture toughness diagrams for simple criteria.
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the GI and GH criteria (Eqs 5 and 6) by assuming that delamination growth would occur if either Eq

5 or 6 is met. This criterion then models the assumption that the Mode I and Mode II failure

processes occur independently of each other. The third criterion assumes that a delamination will

extend if the total strain energy Gv reaches some critical value Gr,- The fracture toughness is

assumed not to be a function of mixed-mode ratio which means that G_c should equal GHc. Since G_,.

and G,_ are known to be quite different for most materials, the GT, criterion (Eq 7) was modified to

account for materials with different Mode 1 and Mode II toughnesses as seen in the next criterion.

Linear Criterion

The fourth criterion simply normalizes each component of fracture toughness by its pure-mode

value as given by [15]

+ =1Gilt !
(8)

The resulting curve on the mixed-mode fracture toughness diagram is a line connecting the pure

Mode I and pure Mode II fracture toughnesses as shown on Fig. 6. This linear criterion (Eq 8) is

perhaps the mixed-mode criterion most often referred,to in the literature [I.11,16-18].

Power Law Criterion

A lifth criterion is obtained by generalizing the linear criterion (Eq 8) as a power law function
1131 as follows
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FIG. 7--Mixed-mode J?acture toughness diagram for the power law criterion (Eq 9).

By choosing c_ and/3, a wide range of material responses can be modeled as shown in Fig. 7. When

= /3 > 1 the failure curve is convex while when o_ = /3 < 1 the curve is concave. If/3 > a then

the curve is skewed so that the curve is more convex near the Mode I axis. Besides cx = /3 = 1

which reproduces the linear criterion (Eq 8) several (c_,¢3) combinations have been used such as

(2,2) [19], (0.5,1) [151, (1,1.5) [201, (1.4,1.8) [21], and (.64,.8) [21]. An optimum value of a and/3

for a given material can be found by fitting the parameters to experimental data.

Exponential Hackle Criterion

The next criterion was developed by modeling delamination growth through hackle formation

[221. This criterion was based on an exponential function of the hackle angle parameter N. The

exponential hackle criterion (Eq 10) was originally written in terms of stress intensity factors but

has been written here in terms of strain energy release rate. The exponential hackle criterion is a

function of the pure-mode toughnesses, moduli, and only one additional material parameter 3'.

G',':. + G',';< = [G,,: - Gii<)e _' "" + Gii<.N = 31/ I + --Gl_<._fE, iGl"<'- _ E22 (10)

The 3' parameter can bc chosen to model a great variety of material responses as shown in Fig. 8.

The exponential hackle criterion can produce a concave or a convex failure envelope and is the first

criterion prescntcd which can model an increasing G'i'_ with increasing G'i'_.

Exponential KiIKli Criterion

Another mixed-mode criterion vcas based on an exponential function of the mixed-mode stress

intensity factor ratio 123] K_/K,. The criterion has been written here in terms of strain energy release

rates and the material parameter rl.
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FIG. 8--Mired-mode./_'a('ture toughness diagram.fi)r the exponential hackle criterion (Eq I0).

G'l'_+ G'l';_ = (Gll_, - Gt_.)en_';l'_/('el_ + GI,
(11)

The exponential Kl/Kll criterion (Eq I1) is plotted on the mixed-mode diagram in Fig. 9. This

criterion can model the same types of responses modeled by the exponential hackle criterion (Eq

10), but an abrupt inflection in the failure curve near the Mode I axis is introduced for rl <- I.

Interaction Criterion

Another criterion was developed based on a Mode I-Mode I! interaction. Thc interaction parame-

ter is allowed to vary lincarly with the mixed-mode ratio as given by 124]

) ) :[ ( )] (12)

The larger the magnitude of i the more one mode affects the other. The interaction criterion (Eq 12)

can model an increasing Mode I with Mode II as seen in Fig. 10. The following values for (K,q_)

have been suggested for different materials: (0.26,0) [251, (3.12,0) 1251, (3,-4) 1241, and (4,-3)

[24]. The interaction criterion is a rather complicated implicit function of G_, and Guc which could
make this criterion difficult to use.

New Bilinear Criterion

This paper introduces a bilinear mixed-mode failure criterion. The delamination fracture surfaces

suggested that a change in failure mechanism appears to take place in epoxy matrix composites near

the 1/1 ratio of GI/G n. The mixed-mode fracture toughness data of the epoxy composites (Fig. 2)

also show a peak at this ratio. If the failure mechanism does change one might expect different



REEDER ON MIXED-MODE DELAMINATION 315

1.2

"q=0
1

0.8

G m
Ic

0.6

0.4

0.2

0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

G m
IIc

FIG. 9--Mi._ed-mode.fracture tou_,,Ime.Y._diagram .[_r the exponential Kv/Kn criterion (Eq I 1).

Interaction Criterion

t2[- _-i _.;.-.- ,,+ o _ _ =o

0.8

Ic \ "'. -

0.6 \ \ _ \ _ \. . .

-._ -.. _."_._ %_..', ,,

0.2 _=.25

0 I _ I I I

0.0 0.5 1.0 1.5 2.0 2.5 3.0
G m

IIc

FIG. lO--Mixed-mode fracture toughness diagran_ fi)r the interaction criterion (Eq 12).



316 COMPOSITE MATERIALS (ELEVENTH VOLUME)

failure criteria to hold in different regions of the mixed-mode diagram. Shifting from one criterion

to another could easily result in a peak in the toughness response as observed in the epoxy

composite data around the 1/I mixed-mode ratio. Since the linear criterion (Eq 8) is simple and has

seen widespread use. a reasonable assumption would be that the failure response would be linear in

each region. The two regions of both the AS4/3501-6 and IM7/977-2 delamination failure data in

Fig. 2 do appear rather linear which further supports this assumption. The resulting bilinear failure

criterion depends on the material parameters _ and _, as well as the two pure-mode toughnesses.

(13)

and ( arc the slopes of the two line segments used in the bilinear criterion (Eq 13). As shown in

Fig. I I, this criterion can model concave or convex responses, and it can model an increasing Mode

1 fracture toughness component with Mode 11. if _ = _" = - G_JGH_, then the bilinear criterion (Eq

13) would reduce to the linear criterion (Eq 8).

Other Criteria

Several other mixed-mode criteria were not evaluated here. They were evaluated previously and

were shown to be inadequate models for the material responses presented herein 19]. One criterion

assumed that the total fracture toughness would be a polynomial function [26] of the ratio of Mode

II to Mode I. Another criterion assumed that the fracture toughness would be a linear function of the

Mode I stress intensity factor [27] K z. Yet another criterion [22] assumed delamination growth

based on a linear function of the hackle angle parameter N described earlier. A mixed-mode

G m
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0.4

0.2 _

0 I I I I t '

0.0 0.5 1.0 1.5 2.0 2.5 3.0

G m
IIc

FIG. 111Mi_ed-mode .fracture toughness diagram Jor the b/linear criterion (Eq 13).
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criterion based on a critical Mode I or Mode II crack opening displacement [28] (COD) also failed

to produce a response similar to those exhibited by the materials presented herein.

Criterion Evaluation

The fact that so many different mixed-mode criteria have been suggested and used indicate that

there is still much to be understood about this phenomenon. The true test of a failure criterion is

how well it models the response of the material of interest. In the past, valid data with which to

evaluate these criteria did not exist. Little mixed-mode data was available, and those that were

available were often obtained from several different tests and were therefore inconsistent. Consis-

tent sets of mixed-mode data for three different materials were presented in Fig. 2. These data sets
will be used to evaluate the different criteria.

Each criterion that produced a general shape close to that of one of the material responses was fit

to the data. A least squares analysis was performed to optimize the curve fits. The least squares

analysis was conducted by minimizing the distance between each data point and the failure curve.

The shapes of the failure curves produced by the G_c, GHc, and G-re criteria (Eqs 5 through 7) are not

even close to the material responses observed, so no attempt was made to fit these criteria to the

experimental data. Since the shape of the linear criterion (Eq 8) was only close to the shape of

PEEK data, no attempt was made to use this criterion for either of the epoxies. The power law

criterion (Eq 9) was fit to each material response even though it cannot model the increasing G_

with G_c observed in the epoxy composite data. The increase in G_7 was not large, and failing to

model this increase would at least produce a conservative model for the material. The exponential

hackle, the exponential KJKH, the interaction, and the bilinear criteria (Eqs 10 through 13) were

used to model all three material responses.

The results of the least square fit of each criterion to the experimental data is given in Table 2.

The best fit curves for AS4/3501-6, IM7/977-2, and AS4/PEEK materials response are shown in

Figs. 12, 13, and 14, respectively. The interaction criterion (Eq 12) shown by the heavy dashed line

and the bilinear criterion (Eq 13) shown by the solid line, appear to model the epoxies better than

the other criteria. This is also indicated by the coefficients of variation R2 given in Table 2. The

closer the coefficient is to 1 the better the model fits the data, and as seen in the table, the interaction

and the bilinear criteria (Eqs 12 and 13) produced the coefficients closest to 1 for both AS4/3501-6

and IM7/977-2. The power law criterion (Eq 9) also had a very high R 2 value for the AS4/3501-6

material, but since the curve does not model the rising G_ with G_, the other criteria are believed

to be better choices. Both the interaction criterion and the bilinear criterion model the epoxy-based

composites well and with the same number of material parameters. The interaction criterion (Eq 12)

is a complex implicit function of Gx_ and G_c which makes it more difficult to use. The bilinear

criterion is based on very simple equations and is therefore easier to use. For this reason the bilinear
is believed to be the best choice of failure criteria for these materials.

The PEEK composite was modeled fairly well by all the criteria tested as seen in Fig. 13. The

coefficients of variation for this material are all about the same, but they are all noticeably smaller

than the coefficients of the other materials because there are fewer experimental points. The power

law criterion (Eq 9) produced the smallest coefficient of variation, but the linear criterion (Eq 8)

produced a curve that was almost as good and with two less independent variables. For this reason,

the linear model is believed to be the best failure criterion for this material. Since the bilinear

criterion (Eq 13) contains two extra degrees of freedom, it models the PEEK material slightly better

than the linear criterion (Eq 8) and might be chosen to be consistent with the criterion used for the

epoxy composites.

Because the response of the epoxy composites was quite different from that of the PEEK

composite, it is clear that no one failure criterion based on just the pure-mode toughnesses will be

able to model all fiber-reinforced polymer composite materials. Since delaminations will often be
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TABLE 2--Least square curve fit parameters for various criteria.

Material Criterion J/m" J/m: Constants R:

AS4/3501-6 Power Law (Eq 9) 90.74 698.3 _ = 0.0571 .9956

/3 = 5.039
Exponential Hackle (Eq 10) 77.39 649.8 3' = 0.1964 .9924

Exponential KJK. (Eq I I ) 90.51 541.1 rl = 1.664 .9888

Interaction (Eq 12) 82.95 708.8 _ = 1.279 .9960

q_ = - 4.905

Bilinear (Eq 13) 79.59 572.1 _ = 0.2039 .9956

= 0.2473

1M7/977-2

AS4/PEEK

Power Law (Eq 9) 313.6 1511 a = 0.126 .9960

/3 = 5.447
Exponential Hackle (Eq 10) 235.4 1462 3' = 0.304 ,9962

Exponential KJK. (Eq I I) 302.8 1371 "r/ = 1.050 .9948

Interaction (Eq 12) 282.8 1497 K = 0.868 .9974

q_ = - 2.962

Bilinear (Eq 13) 283,3 1419 s¢ = 0.2107 .9976

r = -0.371

Linear (Eq 8) 830.4 1251 .9787

Power Law (Eq 9) 831.8 1164 e = 1.662 .9811

/3 = 0.7329
Exponential Hackle (Eq 10) 794,2 1178 3' = 0.870t .9797

Exponential KJK. (Eq 1 I) 789.1 1178 r/ = 0.4940 ,9799

Interaction (Eq 12) 836.15 1179 K = 0.8679 .9803

_p = 1.058

Bilinear (Eq 13) 775.8 1201 _ : -0.1261 .9801

= - 0.7477

subjected to mixed-mode loading and because the mixed-mode failure response cannot be deter-

mined from the pure-mode toughnesses, it is important that mixed-mode toughness testing be

included during the characterization of a material. Once the mixed-mode response of a material has

been determined, the shape of the response can be compared to the different failure criteria

presented herein. When choosing the best failure criterion for a given material one should consider

which criterion has been used successfully for similar materials. It is hoped that a standard choice

of failure criteria will emerge for different classes of material such as a linear criterion for

thermoplastic composites and a bilinear criterion for epoxy composites. When choosing a failure

criterion, one should also consider the number of material parameters and whether the criterion is in

a form that can be easily used. A simpler criterion with fewer material parameters is preferred if it

models the material as well as a more complicated one. After the appropriate failure criterion for

the material is chosen, a least squares fit to the experimental data can be performed to optimize the

material parameters of the criterion.

Conclusions

Many delamination failure criteria that predict a wide variety of mixed-mode fracture toughness

responses have been reported in the literature, but few consistent sets of mixed-mode data exist with

which to compare these criteria. The mixed-mode bending (MMB) test was used to measure the

mixed-mode delamination toughness of a brittle epoxy composite, a state-of-the-art toughened

epoxy composite, and a tough thermoplastic composite. The MMB test, which is a combination of
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FIG. 14--Mixed-mode toughness criterion curves for AS4/PEEK (1 kJIm 2 = 5.71 in.-lblin.2).

the pure Mode 1 (DCB) test and the pure Mode I1 (ENF) test, allowed a consistent set of toughness

data to be produced across the entire mixed-mode range. The delamination fracture surfaces were

examined and a possible change in failure mechanism was observed in the two epoxy composites
tested.

Criteria that have been suggested by other investigators were reviewed and the material re-

sponses modeled by each criterion were compared to the measured material responses. A bilinear

failure criterion was also introduced in an attempt to model the possible change in failure mecha-

nism observed in the epoxy composites. The new bilinear failure criterion modeled the epoxy

composites as well as or better than the earlier models and is relatively simple. The failure response

of the thermoplastic matrix composite, which did not show signs of a changing failure mode, was
quite different from that of the epoxies but could be modeled well with either the bilinear or an even

simpler linear criterion.

Since the responses of the epoxy composites were quite different from that of the thermoplastic

composite, no one failure criterion based on just the pure-mode toughnesses will be able to model

all laminated composite materials. Because delaminations will often be subjected to mixed-mode

loading and because the mixed-mode failure response cannot be determined from the pure-mode

toughnesses, it is important that mixed-mode toughness testing be included during the characteriza-

tion of a composite material. Once mixed-mode toughness testing has been conducted the evalu-

ation of the different failure criteria presented in this .paper should provide general guidance for
selecting the most appropriate failure criterion.
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